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SUMMARY

A general relation 3 empirical in origin# for the mean velocity dis-

tribution of both laminar and turbulent boundary layers is proposed.

The equation# in general# accurately describes the profiles in both lam-

inar and turbulent flows. The calculation of profiles is based on a

prior knowledge of momentum 3 displacement 3 and boundary-layer thickness

together with free-stream conditions. The form for turbulent layers

agrees with the present concepts of similarity of the outer layer. For

the inner region or turbulent boundary layers the present relation agrees

very closely with experimental measurements even in cases where the loga-

rithmic law of the wall is inadequate.

A unique relation between profile form factors and the ratio of dis-

placement thickness to boundary-layer thickness is obtained for turbulent

separation. A similar criterion is also obtained for laminar separation.

These relations are demonstrated to serve as an accurate criterion for

identifying separation in known profiles.

I_IRODUCTION

Empirical methods exist for predicting such important quantities as

skin friction and heat transfer in boundary layers. From the standpoint

of basic mechanics 2 however 3 there is still much to be learned about

boundary layers. Of the many approximate methods of dealing with boundary

layers# no one solution is general enough to completely describe both

the laminar and turbulent boundary layers.

It is reasonable to suspect that a general solution of the equations

of motion would include both laminar and turbulent flows as special cases.

Indeed 3 reference 1 has demonstrated that it is possible to construct a

relation for the mean velocity of channel flow which is applicable for

either laminar or turbulent flow. Recently_ evidence was presented

(ref. 2) suggesting a possible relation of the known laminar boundary

solutions to the measured outer region of turbulent boundary layers.

Thus_ it appears of interest to investigate the possibility of finding

oae relation to represent the complete velocity distribution of boundary

layers.
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While of academic interest_ a general relation for the velocity
distribution 3 though expected3 would not be too useful as an engineering
tool 3 since it would be far too complex co be directly applicable. Study
of a general relation could serve as a guide to the development of con-
sistent flow models of special cases3 su_h as turbulent separation and
laminar-turbulent transition. It would further be of great value in the
analysis of experimental data. As an ultimate objective_ this general
relation could point the way toward the theoretical solution of the
boundary-layer equations.

The present analysis treats one possible empirical relation_ which
appearsto represent the velocity distributions of either laminar or tur-
bulent boundary layers in incompressible fluids. The relation is a modi-
fication of the relation employed in reference I to represent the veloc-
ity distribution in the channel. An attempt to apply the relation of
reference i directly to boundary-layer flow was madein reference 5. The
results of reference 3_ while encouraging_ did not give as accurate a
representation of turbulent boundary-layer velocity profiles as would be
desirable. Since the presentation of reference 33 it was found that
another step in the generalization of the relation could be madewithout
introducing any further complication. The relation also works in the
laminar region of the boundary layer. The present relation is of greater
value in the analysis of experimental dat_ and the study of the structure
of the turbulent boundary layer 3 rather taan in the engineering prediction
of boundary-layer development.

BASICEQUATION

The present relation for the meanvelocity distribution is empirical.
Although it is suggested in what follows that there is certain justifica-
tion for the relation_ its proof can only be judged by how well the re-
lation fits the known velocity distributions. As a logical first step
in the development of the relatiou_ currelt knowledgeabout boundary
layers is reviewed. The object of such a review is to form a consistent
model for the flow in the boundary layer.

Description of the Boulldary Layer

The model for the turbulent boundary layer must conform to certain
established facts. (The primary concern _s the establishment of a math-
ematical model for the layer.) In partic_lar 3 the layer can be divided
into roughly two regions where the flow cILaracteristics are different.
The regions are: (1) The outer (major) p(rtion of the boundary layer
where the transfer of momentumand energy are largely accomplished by the
turbulent fluctuations. (2) The region very near the wall where the ef-
fects of viscosity_ as well as the turbul_nt fluctuations, must be
important.



The outer region of the turbulent boundary layer was extensively
studied in reference 2. It was demonstrated that this outer-reglon ve-
locity distribution is similar to a laminar velocity distribution. Brief-
ly 3 the picture of the turbulent velocity profiles proposed in reference
2 is a laminar profile of high viscosity with a very thin sublayer of a
different fluid with much lower viscosity. An analysis presented in
reference i for the turbulent velocity distribution in a channel also
implies this similarity to a laminar flow in that the velocity profile
in the outer region of fully developed turbulent channel flow is approx-
imately the sameas the laminar distribution.

In an earlier investigation (ref. 4) it was observed that similar
velocity distributions in this outer region could be obtained by proper
selection of the static-pressure distribution. Reference _ demonstrated
that the distribution of velocity in the outer region was nearly inde-
pendent of the inner region 3 and that such parameters as momentumthickness
and displacement thickness dependedonly on the distribution in the outer
region. In a more recent work (ref. 2) proof was given to showthat the
similarity was not exact3 but that it was satisfied within experimental
accuracy.

The flow mechanismnear the wall will be more complex than that in
the outer region 3 in that both viscosity and turbulent transport of momen-
tum and energy are important. The present analysis takes issue with the
mixing length and laminar sublayer model generally assumedfor this in-
ner region. The concept of an eddy viscosity implied by the mixing length
theory maybe retained for the present analysis (application of the eddy
viscosity for pipe flow with the equivalent equation as studied herein
was madein ref. 5); however3 the logarithmic velocity distribution could
not be Justified. In recent years there has been strong support for an
assumption that the logarithmic-type distribution 3 obtained from mixing
length theory_ is a universal distribution for all turbulent boundary-
layer flow. However3 it is suspected that the similarity observed for
this inner region is only approximate_ as in the case of the outer region.
If the concept of a similarity of the outer region is modified (demonstra-
ted in ref. 6)3 the logarithmic distribution for the inner region is only
a particular solution of a more general power law relation. (The work of
ref. 6 was done unawareof (or before) that completed in ref. 2. In ref.
6 the assumptions of modified similarity were based on suggestions made
by A. A. Townsend.) It is important to note that while the data of ref-
erence 7 are cited extensively to Justify the logarithmic distribution
in the different pressure gradient flows 3 they demonstrate that a power-
law distribution fits the data (see fig. l_ ref. 7). The versatile skin-
friction equation derived in reference 7 dependson the existence of a
power law distribution for the velocity near the wall.

Oneconcept that is not included in the present model for the turbu-
lent boundary layer is the "laminar sublayer." (Of course_ a question of
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definition may arise here since laminar sublayer maybe the term ap-
plied to the complete inner region. However, the word "laminar"_ flow
in layers, is out of place in such a definition.) While viscosity will
dissipate a great deal of turbulent energy in the region adjacent to the
wall, no Justification can be found for the assumption that all the tur-
bulent energy must be dissipated before the wall is reached.

For the present model of flow In the inner region of the turbulent
boundary layer, it is assumedthat the influences of wall and viscosity
are evidenced by the orientation of the direction of the axis of rotation
of eddies, and by the dissipation of turbulent energy. It has been shown
(ref. 8, see fig. 25) that the principal axis of the turbulent stress
tensor tends toward a direction that is parallel to the wall as the wall
is approached. This approach is believed to show that the eddies become
parallel to the wall in this region. Thus, the "virtual viscosity" de-
creases as the wall is approached (reaching the molecular value at the
wall) because of the eddy motion becomingparallel to the wall. The model
is crude in that the eddies are far from t_o-dimensional 3 so that the
concept of a principal axis has statistical meaning only. This model
does not consider the possibility of a production of turbulent energy,
as well as a dissipation t in this inner region.

In summary#the present model for turbulent boundary layer indicates
an outer region of homogeneousturbulence (as far as transport properties
are concerned), wherein the turbulence can be replaced by a constant eddy
viscosity. Similar velocity profiles are possible in this outer region
to a reasonable degree of approximation. Kn the inner region, which is
only a very small part of the complete layer_ both turbulent and molecular
transport properties exist. The turbulent transport in the inner region
decreases as the wall is approached, partl/ because of the turbulent
eddies laying over parallel to the wall 3 a_d also becauseof viscosity
dissipating the turbulent energy. While t_e trend in the inner region
is toward a laminar flow 3 no completely laninar region exists. The ve-
locity distribution in the inner region is more likely to be a power law
relation rather than a logarithmic relation.

Developmentof the Empirical MeanV_locity Profile Equation

The present model no doubt will be im?roved as the understanding of
turbulence becomesmore complete. For the present it can give some
Justification for the boundary-layer velocity equation employed.

The form of the equation is suggested in reference 1. Reference I
further demonstrates how the relation not )nly represents the velocity
dlstribution_ but also predicts the measuredturbulent shear-stress
distribution.
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The fact that the flow in boundary layers is similar ' to that in
channels has long been realized. Thus_ an attempt was madeto apply the
relation of reference i to the turbulent boundary layer (see ref. 3).
The relation proved only approximately correct, as might have been ex-
pected3 since the boundary layer has more freedom of motion than that of
fully developed channel flow. However_the relations suggested from the
analysis of reference 3 have led to someextensions 3 which are incorpo-
rated in the present analysis. In reference 3 the relation from refer-
ence i was employed directly as

u-7--A + B - + c - (1)

where A 3 B_ and C were determined from boundary conditions. (Symbols

are defined in appendix A.) An important observation of reference 3 was

that the square power term contributes greatly in the outer region of the

layer} both power terms contribute in the inner region. For turbulent

channel flow the square term is necessary so that the equation can be

reduced to the exact laminar velocity distribution_ and in line with the

results of reference 2 3 the outer region of turbulent channel flow must

vary like the laminar velocity distribution. Thus_ for channel flow

equation (I) corresponds to the model of the outer region of the flow.

However_ for laminar boundary-layer flow the use of a square power would

not be expected to be exact. A generalization of equation (I) is there-

fore necessary if accurate results are to be obtained for a boundary

layer. As the next logical step in equation (1)3 the square power term

is replaced by an arbitrary power m. The power 2n is retained as

such 3 so that the present notation remains the same as references I and

3. It is_ of course, obvious that m and 2n are interchangeable with-

out altering the basic equation. However_ for the present analysis the

boundary conditions are employed so that m will correspond to the

square term for the proper profile. In other words_ m will correspond

to the power for a laminar velocity distribution.

The present analysis starts with the following equation:

__u.A+B - +c - (2)
U I

A_ B, and C are evaluated from the following boundary conditions, which

are valid for both laminar and turbulent boundary layers when



y=0

y=5

U=0

8U = Tw

V

U = U I

_U= 0

The values of A 3 B, and C are

A=l

B --2(s- n) =
2n - m -

2s- n -C= 2n_m =

(4)

where s is a fundamental wall shear-stress i_?arameter defined as

_Y_W

S _

2Ul_

For channel flow, with 5 equal to the channel half-width 3 s is a ratio

of the wall shear stress Xw to the corresponding laminar (same maximum

velocity U1) wall shear stress 2UIW/8. The parameter _, as noted in

equation (4), is used for the value of the pa_'ticular grouping of s 3 m,

and 2n encountered. Equation (2) is rewritten as

(s)

Equation (5) is a general relation for t_e mean velocity distribution

in boundary layers 3 or for any shear flow for which the boundary condi-

tions (eq. (3)) are valid. There are four eorstants, 8, m, 2n, and s,

which must be known to completely specify the profile.

General limits on the magnitude of the ccnstants are as yet unknown.

The boundary conditions (eq. (5)) require positive values of m and 2n.

The values of m and Zu are not limited to whole numbers in order to

obtain accurate distributions) therefore_ the high-order velocity de-

rivatives at the outer edge of the boundary layer (y = 5) may not be

finite. (The failure to match high-order velocity derivatives is a dis-

advantage of most empirical relations for the velocity distribution.)



However, the high-order velocity derivatives do not generally enter into
boundary-layer calculations. A distribution can be calculated for both
positive and negative (reverse flow) values of the skln-frlctlon parameter
s (ref. 33 see fig. l(c)). The special cases of the constants, 2s=2n=m
and m : 2n, will be considered in the section on laminar flow. The case
of 2n = _ will prove of value in the separation region.

The present constants, _ m 3 and 2n are related to the familiar

boundary-layer parameters 3 displacement and momentum thickness, by the
following equations

5* _/__ + l+__Z5-
m

5 m+l 2n+l (6)

and

e _ __i _--+ (i + _) r_ 2_ i (i + _)]
5= m + 1 2m + 1 [2n +m + 1 + 2n + 1 4n + lJ-

(7)

This report now discusses the adequacy with which equation (5) repre-
sents both laminar and turbulent velocity distributions.

THE TURBULENT BOUNDARY LAYER

Turbulent flow is considered first since it is the more complex case

of boundary-layer flow. The present analysis demonstrates how equation

(5) will fit measured turbulent boundary-layer profiles. The ultimate

engineering objective would, of course, be that equation (5) may be used

to predict the development of turbulent boundary layers. However, the

present analysis cannot proceed beyond the prediction of the velocity

distribution, once the values of the necessary constants are determined

from other sources. To someone unfamiliar with the literature on tur-

bulence the fitting of an analytical expression to an already measured

profile may not appear to be of much value. However 3 the present state

of knowledge of turbulent boundary-layer flow is incomplete 3 therefore 3

the mere fitting of experimental data is still a major problem. Appar-

ently 3 the only method found in the literature for fitting a complete

curve through the turbulent mean velocity data (with exception of ref. 3)

is that developed in reference 9. Tables were compiled in reference 9

(from experimental data), which when used with experimental values of

skin friction and various coefficients give reasonable velocity distri-

butions for the turbulent boundary layer. The results are based on the

hypothesis that similarity exists for both the outer and inner regions

of the boundary layer. The present general relation does not require the

existence of similarity, but similarity will prove useful in the applica-
tion of the relation.
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Comparisonwith MeasuredVelocity Distributions

Direct evaluating of equation (5) for any particular measuredpro-
file is a problem of determining m and ;:n3 since _ and s can be
found from direct measurements. For the present determination 3 m and
2n are expressed in terms of 8" and e3 since these values can readily
be obtained from the measureddata. Use of equations (6) and (7) (with
knowledgeof 8 and s) directly to evaluate m and 2n in terms of
8" and e is quite tedious_ however3 it will be demonstrated later that
it is possible to makean approximation which greatly simplifies the
calculations. An outline of the method of calculating a profile is given
in appendix B.

Figure 1 comparesactual measuredprofiles with the predicted dis-
tributions of equation (5). The value of 5 for these profiles was
arbitrarily taken as the point where the ih'ee-stream velocity appeared
to be reached. The proper value of 8, independent of an arbitrary
choice 3 could be obtained from measurementsof the intermittancy of tur-
bulence (see ref. 10)) however_ intermittency measurementsare not avail-
able for the profiles presented in figure !.

For figures l(a) and (b) the values o_"wall shear stress 3 necessary
in determining s, were obtained from locai_ heat-transfer measurements
(see ref. 10). For figure l(c) the skin-f_Iction value was obtained from
the relation developed in reference 7. Figure l(d) shows the separation
profile measured in reference ll} as will be shownlater no skin-frictlon
value was required. The heat-transfer methodwas also employed in ref-
erence 7 in order to evaluate the skin fri,:tion of figure l(e). Fig-
ure l(f) showsa separation profile in whl _ an uncertainty in skin fric-
tion exists. In order to fit the profile _fig. l(f)) it was assumedthat
2n had increased to such a large value theft it might be taken as infinite;
in this case no value of s is required. This conclusion will be covered
more fully in the section Separation Region.

In most cases the fit of equation (5) to the measureddata is quite
good. Note that on figure l(a) a curve pr,_dlcted by the method outlined
in reference 3 is also included to showth,_ improvementof the present
approach. It would have been surprising h_d the predictions of equation
(5) not fitted the measurements,since the relation was forced to meet
all boundary conditions including the shea_-at the wall plus two integral
values. The fitting of equation (5) to th_ data is, of course_ sensitive
to the values of 5_ 5*3 and e used. A _light change in any one of the
parameters my alter the fit of equation (i_). For the thicker boundary
layers, such as those of figures l(a) to (1) the parameters are known
quite accurately 3 and no great question arises in their determination.
However, for the profiles 3 such as the data of figure l(e)3 which must
be taken from small plots 3 the accuracy of evaluating the parameters is
limited. For the two profiles of figure l_e)3 5 was chosen in each case



as the last plotted point of the data of reference V. In each case it
appears that a somewhatbetter fit could have been obtained if a slightly
different value of 5 were used.

A region maybe noted in figures l(c) and (d) for small y/8 3 where
the predictions appear to be low as comparedwith the measuredpoints.
Since these data (figs. l(c) and (d)) are for profiles in and near the
separation region_ somequestion of the experimental accuracy exists.
However_it is suspected that this deviation may indicate a fundamental
difference between the predictions of equation (8) and actual flow con-
ditions. As noted in the discussion of the flow model for turbulent
boundary layers, there is no provision madein the present analysis to
account for any subregions of abnormally high turbulence. Reference 12
reported evidence which suggests such local maximumsof turbulent energy
in the separation region. Recent unpublished hot-wire measurements(re-
corded by V. A. Sandborn) also appears to confirm the findings of ref-
erence 12 for the region near separation.

Similarity of the Outer Region of the Turbulent Boundary Layer

As noted previously the concept of similarity has been employed to
study both the inner and outer regions of the boundary layer. It is
instructive to examine the present velocity profile equation from the
standpoint of similarity, since similarity can be shownto give an ap-
proximate method of evaluating the parameter m. In order to develop
the concept of similarity in the outer region 3 the ideas illustrated in
references 2 and 4 are reviewed briefly.

Reference 4 demonstrates experimentally that for particular pressure
distributions, obtained by trial and error 3 a turbulent boundary-layer
flow can be established in which all the velocity profiles for the outer

U - UIregion are identical whenplotted as U_ against v" Such flows
were termed equilibrium flows and will, henceforth# be referred to as
such. Two parameters

/_ UI-U= U_ dy (8)

and

/o( W
G -- (9)
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were employed to specify each particular ecuilibrium flow. Obviously 3

U - U I

if U_ is a unique function of _3 as required for an equilibrium

flow, then _/5 and G are unique constamts for the same equilibrium

flow. It should be kept in mind that the profiles only approach identical

profiles in the outer region of the layer 3 so _/5 and G will vary

slightly from one profile to another even for the same equilibrium flow

(since UI/U _ is not necessarily constant in equilibrium flows). How-

everj the inner region where the similarity is not valid is so small com-

pared with the outer region that the experimental value of the integrals
(8) and (9) is unaffected by the deviation.

The parameters_ displacement and momertum thickness, are related to
and G, respectively_ through the skin friction as

A (lO)

and

Equations (i0) and (ii) may be combined and rewritten as follows

(ll)

0 _ 5"* I.___Wo--"G "/5 _'2 (12)

/ r". _
Thus, for an equilibrium flow _A--_) is a constant, and a unique relation

between e/6 and 5w/6 is predicted._--Iv'

Equation (12) is the clue, which brought about the present general-

ization of the equation of reference 5. In reference S it was noted that

by neglecting terms of order I/2n in the _xpressions for momentum and

displacement thickness (corresponding to equations (6) and (7) of the

present analysis) an equation of the form o" equation (12) was obtained.

(It is now evident that ref. S was dealing ¢ith the particular equation

for the equilibrium flow defined by (A--_) = _ The present analysis gives

the relation

0 6" (m + l)2 18___*_2

: T - (2m+ l)k-Y} (is)
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when terms of order I/2n are dropped from equations (6) and (7),

and the two equations are combined. (As can be seen in fig. 13 2n is

always an order of magnitude larger than m.) It follows that for equa-

tions (12) and (IS) to be equivalent 3 m must be a constant for each

particular set of equilibrium flows. The relation between m and (A--_

is

(l_)

The plus sign is used for the square root term in order to ensure an m

value always positive and greater than one, as is required in the veloc-

ity equation.

The agreement with the similarity assumptions of reference _ can be

demonstrated by rewriting equation (5) if the 2n power term is dropped

completely. In the parameters used for similar profiles the relation
becomes

U1 -UUm = _A (m + 1)( 1 - Y? (is)

which requires at y = 0 (U = 0)

UI A (m + i) -- constant (16)

Equation (15) can be compared with the results of reference _ by

setting m = 1.8 for constant pressure flow (as computed from the values

of _b = 5.6 and G = 6.1 given in ref. A). In particular 3 reference 2

fits the known laminar profiles to the outer region of measured turbu-

lent profiles. Figure 2(a) compares equation (15) for the flat-plate

case with a curve of the family of Blasius profiles. While the agree-

ment is certainly good_ it is suspected that it might even be better than

shown_ since reference A notes: "In plotting these curves a small cor-

rection was made in the constant 3.6 to account for the fact that the

laminar profiles are not expected to represent the turbulent profiles

in the inner i0 to 20 percent of the layer." A slight change in the

constant 3,6 could account for the disagreement of the present relation

and that given in reference A.

Figure 2(b) shows a comparison of equation (15) evaluated from the

constants for pressure distributions 1 and 2 (ref. A). A representative

laminar profile reported in reference 2 is also shown for each profile.

The fit of the present profile could be improved by a slight adjustment
in _8.
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A further comparison of the flat-plate profile with an experimental
measurementis madein figure 3 in order to determine an accurate value
for m. The comparison with the analysis of reference 2 shows that for
optimum fitting of the present relation a slight adjustment in the con-
stants is required. The dashed curve of figure 3 demonstrates the im-
provement of fit whenthe value of _5 is taken as 3.5 instead of 3.6.

The value of G was not changed.

The results of the present analysis of similarity profiles need not

be limited to only equilibrium flows. Equation (13) is expected to apply

for any turbulent flow in which 2n >> m. It is observed experimentally

that the condition 2n >>m becomes progressively better the farther the

flow is from the transition region. Obvlously_ the region of application

of the approximation is governed by the concept that the thickness of the

sublayer decreases as the Reynolds number based on distance downstream
increases.

The present analysis may be employed to indicate the approach of a

boundary layer to an equilibrium flow. The (_ta of reference 13 shows

the severe case of a zero pressure gradient boundary layer disturbed by

a rod. Figure 4 shows three profiles measured at different x-distances

downstream of a 0.24-inch-diameter cylindrical rod in contact with the

wall. The dashed curves on figure 4 are the zero pressure gradient

equillbriumprofiles obtained from equation (15) with m = 1.9. For fig-

ure 4(c) the profile is approaching closely _he equilibrium profile pre-

dicted for the outer region.

The solid curves of figure 4 were obtained by using equation (15)

to evaluate m and then using equation (6) Jn the approximate form

_-- (re+l) 5.
5 (17)

to evaluate _. The rod represents the case where turbulence is produced

excessively at a location within the boundary3 thus, the general equation

is not a good fit of the measurements.

Similarity of the Inner Region of the Turbulent Boundary Layer

The concepts of similarity of the inner region stems from considera-

tions of mixing length and dimensional analysis. The variables U/Ux and

yUx/v have been accepted as the similarity c _ordinates, with large volumes

of data supporting their use. Recent analytical work (ref. 9) has proposed

that the velocity distribution in the inner region reduces to one universal

curve when plotted in the U/U_ - yUx/v coordinate system. The present

analysis, however t does not support the hypot!_esis that U/UT is a
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function of yU_/v only, although the present analysis is in good agree-
ment with experimental data in this inner region.

The data of figure i are replotted for the inner region in terms of
U/U_ and yU_/v in figure 5. The predicted distributions of figure 1
are also converted to the new coordinates and are shownas the solid
curves on figure 5. Also included in figure 5 (dashed curves) is the
faired distribution given by reference 9 as the best representation of a
great numberof experimental profiles. The linear relation U/U_ m yU_
is included as a reference curve on figure 5. In all cases the prediction
of equation (S) appears equal to or better than the curve of reference 9.
Obviously_ the experimental data presented in figure S do not suggest one
universal curve for all turbulent profiles.

Although the present relation does not give the linear relation
U/U_= yU_/v_ it maybe shownto approach this linear relation. Equation
(S) maybe rewritten, using the binomial series 3 in order to allow a
closer look at the "low" powers of (y/5). In terms of U/Ux the equation
maybe written as

" C1- - m) + +

U-_ nm + 5

8n 5 - lOn 2 - 3m 2 - m3]/y_ 2

3(2n m) Jk ]

Jl" •

To first order in y, U/U_ = yUx/v ) however, second and higher order ve-

locity derivatives are predicted at y = O.

The existence of the second velocity derivative at the wall is ob-

Jectionable since it is considered essential that it vanish for the flat-

plate case (see ref. 14). The second derivative at the wall was shown in

reference 3 to give a reasonable interpolation for the measured turbulent

shear stress to the wall. However, the approach of the turbulent shear

stress to the wall as the fourth power of the distance (logically deduced

in ref. 15) stands as an objection to the present relation. The first

derivative, unlike the second, fits the boundary condition, and also fits

the data over most of the layer, although there are some limited regions

where the deviation from data is detectable. The velocity distribution

itself fits the data well, and therefore all integrals derived from the

velocity distribution are expected to give adequate accuracy.
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Separation Region

In order to attach physical significance to the present results at
separation 3 the model pictured for the boundary layer must be expanded.
Separation is believed to begin in a very _ntermittent way, such as ob-
served in waterflow (ref. 12). This intermittent separation region may
have a time average shear stress at the wall_ although as will be seen,
the velocity distribution is more or less independent of the wall condi-
tions. It is assumedthat the inner region, which depends greatly on
wall conditions, vanishes at the start of _ntermittent separation. The
vanishing of the inner or sublayer agrees with the concept that it de-
creases in thickness as the x-Reynolds number increases. The appearance
of the constant virtual viscosity boundary layer can be postulated to be
the beginning of intermittent separation.

The sequenceof flow events beyond the beginning of intermittent
separation is not treated. It can be concluded that two-dimensional
separation with skin friction equal to zero occurs somewheredownstream
of the start of intermittent separation. Further downstreama region of
reverse flow might also be expected.

Becauseof the above suggestions 3 the case of wall shear stress
equal to zero is not considered as a criterion for separation, but rather,
the special case of equation (5), in which the 2n power term is neg-
lected, will be considered. Mathematically this is done by taking the
limit of equation (5) as 2n approaches infinity. The simple profile

1 - - (19)

results. (Eq. (19) was first implied from the evaluation of the separa-

tion profile (fig. l(d)).) With the use of equations (15) and (17) to

evaluate m and _# a value of -1.00 for _ was obtained. Note that

equation (19) with m = 2 is the exact sol_tion for laminar flow in a

channel I Poiseuille flow. With m = i equation (19) is the Couette flow

solution. A value of s may be obtained f_om the derivative of equa-

tion (19), s = m/2. The hypothesis that s = 0 at separation is not

required by equation (19). The value of waLl shear stress does not enter

into the calculation of the velocity distribution as specified by equa-

tion (19) because of the reduction of the imer layer to a negligibly small

region.

If equation (19) can be accepted as representative of flow at sepa-

ration 3 it leads to a unique relation betwem momentum, displacement, and
boundary-layer thickness

5" I
--- 1 + (2o)T

1
8
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Equation (20) may be used as the criterion for the onset of intermittent

separation. At a given value of 5"/5_ profiles with values of the form

factor $*/e greater than that predicted by equation (20) will be sepa-

rated. A plot of equation (20) is shown as the dashed curve on figure 6.

Experimental values of the form factor $*/e and 5*/5 for profiles

measured near the start of turbulent separation are plotted on figure 6.

These measured points are for several different flow configurations. In

all cases the predicted criterion seems quite reasonable and is within the

limits of uncertainty of measurement as to where separation is occurring.

The insert on figure 6 shows data (ref. 20) for the flow in an axi-

symmetric diffuser. (Only the data in and approaching the separation

region are plotted.) No statement about separation was made for the

data of reference 20) however 3 if the values of skin-friction coefficient

listed in table II of reference 20 are plotted against x_ it is noted that

a definite break occurs in the curves near Cf = 0.000A. It was arbitrar-

ily assumed that Cf = 0.0004 represents the onset of intermittent sepa-

ration. The insert in figure 6 shows that the assumption for the onset

of separation corresponds to the predictions of equation (20).

An approximate method of treating shock-induced turbulent separation

based on knowledge of the form factor before and after the separation is

made in reference 21. A one-seventh power profile was selected

(8*/8 = 0.1250) as being representative of flat-plate turbulent boundary

layers. This gives a form factor of 1.286 before separation. In order

to correlate shock-induced turbulent separation measurements reference 21

selected a value of H = 2.2. The present criterion for separation_ using

the same value of 5"/53 would predict H = 2.1A3 at separation, and the

point at 5"/5 = 0.1250 (ref. 21) is included on figure 6_ the agreement

is seen to be good.

THE LAMINAR BOUNDARY LAYER

Equation for the Laminar Boundary Layer

For laminar flow it is possible to simplify the general equation.

No longer do two separate power terms seem necessary to account for two

different boundary-layer regions. Several possible mathematical condi-

tions may be imposed on equation (5) in order to eliminate one of the un-

knowns. One method_ self evident from attempts to fit laminar profiles_

is that 2n = m) this is an indeterminate point of equation (5). Taking

the limit of equation (5) as 2n _ m yields the following relation (s

and 5 being held constant):

=1 - - -re)logi-y + (21)
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Another possibility 2s = m (or 2n) would also eliminate one of the power

terms from equation (5). Kowever 3 the same result is obtained if 2s = m

is required in equation (21).

= i i - (22)
U 1

Thus, equation (21) is a more general relati9n than equation (22). Equa-

tion (22) is identical to equation (19). Equation (22) is an easily

identified equation for laminar flow in that it contains several exact

solutions.

m = 0 (Potential flow)

m = I (Laminar Couette flow)

m = 2 (laminar Poiseuill,_ flow)

Equation (22) may also serve as a first approximation to laminar boundary-

layer flow 3 however, the restriction 2s = m is not exact for boundary-

layer flow. Equation (21) has been considered the most logical choice

to represent laminar boundary layers.

The skin-friction parameters may be expressed in terms of the free-

stream pressure gradient by employing the boundary condition at y = 0.

_2U _ d.UI

(This boundary condition was useable only for the laminar case of eq.

(5).) The following relation between s3 m 3 and 5 is obtained by using

condition (25):

52 dU 1

_- _-- + m2

2s = ....(2m- l)'
k 4m 2

= (24)

where (52/v)(dU1/dx) is the well-known Pohlhaasen pressure-gradient param-

eter k. Equation (21) is reduced to a two-p_rameter (m and 8) family

of curves by using equation (24)

The need for two parameters to represent adequately laminar velocity

distributions was pointed out in reference 22. A one-parameter family_

such as the Pohlhausen fourth-degree polynomL_l, gives reasonably accurate
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solutions in a region of accelerated flow, but its adequacy in a region
of retarded flow may be quite poor. Equation (22) is also objectionable

from this standpoint.

The relations for displacement and momentum thickness are

5* m(m- l) - _.

5 C2m- 1)(m + l) 2

1 (_6)
+ (m+l)

e m(m- l) - k m

= (2m - 1)(m + l)2 + (2m + l')(m + 1) -

2[m(m- l) - X]
(2m- 1)(_ + l) 2

2[m(m- l) - X]2
(2m- 1)2(_ + l) 3

(27)

Equation (25) could be used with the momentum-integral and energy-

integral equations (see, for instance, ref. 22) to obtain an approximate

solution for the complete laminar boundary layer. However# since the

present report aims to demonstrate the ability of the equation to repre-

sent the velocity profile, the tedious process of solving the complete

equations was not undertaken.

Comparison with the Blasius Flat-Plate Velocity Distribution

The present relation can be compared with the Blaslus profile by

assuming a value for the boundary-layer thickness 5:

2--_ (28)

This thickness corresponds to a velocity ratio of U/U 1 = 0.994 for the

Blaslus profile. The parameter m is now computed from the momentum

equation, which for a flat plate is

de xw 2sv m 2 v

= _1 = _11 = 5UlC2m - 1) (29)

and

de d5
_= _ (k = O, flat plate) (50)
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where a = e/5, as expressed by equation (27) with k = O. When

at x = Oj the momentum equation is integrated to give

4/ 2m2 _-

5 = _(2m - i)_ I

5=0

(31)

Equation (31) together with equation (28) can be solved to give a value
of m = 2.86.

With the substitution of the value for m into equation (25) and

the setting of k = O, the flat-plate lamin_r boundary-layer velocity
profile becomes

The profile of equation (32) is compared with the Blasius profile in fig-

ure 7; for the Blasius case the relation y/5 _ _/5.2 was used. A com-

parison of the parameters computed for the _resent profile with the exact
values of Blasius is as follows:

Present

analysis

V

Cf 1.53 _i L

Exact

values

(Blasiu)

V'

0.664 U

1.729 v_
U

The comparison of equation (32) with the Bl_sius profile is certainly

satisfactory 3 and the assumption used in ar]'iving at the laminar equation

appears reasonable at least for the flat-pl_te case.

In the section Similarity of the Outer Region of the Turbulent

Boundary Layer_ it was demonstrated that th_ velocity distribution in

U I - U

terms of Ur is approximated by a simple power relation, equation

(15). A simple method can be suggested for determination of the power m

of turbulent profiles from equivalent laminar flows. Consideration of

equation (22) with the momentum equation (29) requires that 2s = m and
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m

= (m + l)(m + 2)"

is

The equation for 5, equivalent to equation (31),

8 = [_2(m + l)(2m + I)] _l
(33)

For the Blasius case 8 = 5.2 __ it is found that m = 1.86. Thi_

value of m may be compared with the values of m = 1.8 and 1.9 shown

in figure 3 for the outer region of the turbulent boundary layer.

A comparison of the laminar equation (52) with the turbulent equation

(15) (m = 1.9) is shown as an insert in figure 7. The similarity coordi-

U - U 1
hate for turbulent boundary layers is used for the plot. The

Us
laminar profile, equation (32)I was transformed to this coordinate system

(%/_)_.-- U'(O) (ref. 2, see ordinate of insert ofby using the constant
U1

fig. 10). The change due to the apparent difference in viscosity is ac-

counted for by the k, which was equal to 0.018 (ref. 2). The value of

at y = 5" in the laminar boundary layer is N*, and U'(0) is the

derivative of U with respect to N at N = 0. For the present trans-

formation this constant (_/_),/N.U'(O)-- was 0.102. Good agreement is
U1

obtained between the profile from the equation for mean velocity in a tur-

bulent layer (eq. (15)) and that for an equivalent laminar layer obtained

by proper transformation of equation (32).

Comparison with the Laminar Separation Profiles

As in the turbulent boundary-layer case, a consideration of the

separation region of the laminar boundary layer is of prime importance.

Laminar flow separation seems well defined as the point where s = 0.

The condition s = 0 leads to a simplification of the velocity equation

(21), and also yields a relation for form factor 5*/e as a function of

the Pohlhausen pressure gradient parameter.

For s = 0, equation (24) gives the following relation of m and

m = =L _fk (34)

and equation (24) reduces to (only the plus sign gave physically real

results) :
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u [._ log

This separation equation does not require a particular value of X at

separation 3 but agrees with the fact that separation occurs over a range

of k between approximately -5 to -12.

The relations for displacement and momentum thickness become

e = (2_ai+iI
(_ + l)2

5" 2_ni+ 1 (36)
8 (_ + l)_.

(2_r_+ 1)3 (2_a-f+ i)2 (2_ + i)

Equation (55) is compared with several different laminar separation

profiles in figure 8. The value of k in each case was taken either from

stated values or from information known about the profile being compared.

(For the theoretical profiles 5 is taken at U/U 1 _ 0.995 to compute

k.) Figure 8(a) compares the present predict:ion and that of the Pohlhauseu

equation for k = -12. In figures 8(b) and (_) the theoretical profiles

computed in references 25 and 24 for differen; particular pressure gradi-

ents are compared with the present relation. Figure 8(d) compares the

present relation with actual measurements mad_ in the separation region

of an elliptic cylinder (ref. 25).

The agreement of the present profile wit]L the two theoretical pro-

files is quite poor. There is_ of coursej a ],ossibility that the theo-

retical profiles are questionable in that the:" depend on the basic

boundary-layer assumption that conditions chmLge very slowly in the x-

direction. This assumption is not generally _alid in the separation

region. Both the Pohlhausen and the present ],rofile are independent of

this condition. The prediction of the exper_Leutally measured separation

profile (fig. 8(d)) is much better than in the case of the theoretical

profiles# although the predictions are slightly lower than the measured

points. The present relation would agree almost exactly with the data
of reference 25 if k had been -6 instead of -5.

The form factor 5"/0 may be expressed _s a function of k by com-

bining equations (56) and (37). This relatior is plotted as a function of

on figure 9. Values from the separatior profiles considered in fig-

ure 8 are also shown on figure 9. For the pazticular profiles considered

the prediction of separation is acceptable. The relation indicates that

the limiting value of a form factor is 2.67 for _U_,. This limiting

value of form factor might be compared with the value of form factor of

2.60 for the Blasius profile.
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CONCLUSIONS

A modified form of the velocity relation previously proposed in ref-
erence 1 has been studied in order to establish a general relation to
represent boundary-layer velocity profiles for both laminar and turbulent
flow. The resulting relations are consistent with a reasonable model of
the flow and represent experimental velocity profiles quite adequately.
Someof the specific conclusions drawn from the present study are:

i. The proposed equation fits measured turbulent boundary-layer ve-
locity profiles quite well.

2. The relation for turbulent boundary layers agrees with the pre-
sent concepts of similarity in the outer region of the boundary layer
in that a one-parameter family of profiles is obtained. A relation of
the similarity parameter to the equivalent laminar boundary-layer flow
parameters is possible if concepts from reference 2 are followed.

3. The present results are in reasonable agreementwith available
experimental data over the whole profile_ including the region near the
wall. It is demonstrated that the logarithmic profile does not represent
all experimental data.

4. A unique relation between the profile form factor and the ratio
of displacement thickness to boundary-layer thickness is obtained from
the present equation for turbulent separation. Comparisonwith experi-
mental data shows that the relation serves as an accurate criterion for
identifying turbulent separation.

5. The general equation reduces to a laminar profile equation which
accurately represented the Blasius flow. The laminar profile also checked
the Pohlhausen and an experimental separation profile accurately, however,
theoretical laminar separation profiles were matched less accurately.

6. A relation obtained for the form factor at laminar separation in
terms of the Pohlhausenpressure gradient parameter indicated separation
would not occur when the form factor was less than 2.67 (Blasius value
2.60). The criterion proves adequate for the available separation
profiles.

Lewis Research Center
National Aeronautics and SpaceAdministration

Cleveland, Ohio_ November19_ 1958
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APPENDIXA

A3B,C

Cf

G

K

k

L

m

n

P

Re

Re e

s

U

U 1

X

X

constants

SYMBOLS

local wall shear-stress coefficienl 3
_W

equilibrium boundary-layer profile parameter# eq. (9)

constants k_J'_

constant to account for turbulent viscosity

characteristic length

profile parameter depending on oute_ region of boundary layer

profile parameter depending on inne"_ region of boundary layer

static pressure

Reynolds number, LU--_-1
v

Reynolds number based on momentum tl_ickness 3 UI--_e

Dzw

wall shear-stress parameter_ 2Ul_

local mean velocity

free-stream mean velocity

skin-friction velocity,_

distance along curved surface of elliptic cylinder

direction parallel to boundary and _n direction of mean flow

direction normal to boundary and approximately normal to mean flow
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A

6

8*

e

v

P

equilibrium boundary-layer profile parameter, eq. (8)

boundary-layer thickness, in.

boundary-layer displacement thickness, in.

profile weighting function, 2(s - n)
2n - m

variable, y_

boundary-layer momentum thickness, in.

Pohlhausen pressure-gradient parameter,

coefficient of viscosity

kinematic viscosity, g/p

density

local wall shear stress

62 dU l

v dx
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APPENDIXB

PROFILECALCULATIONPROCEDURE

Equation (5) can be used to computeany turbulent boundary-layer
velocity profile once e/83 5*/83 and 8 are knownalong with the gen-
eral flow conditions of the main stream_ namely density, viscosity, and
velocity. A brief sLmmmryof the necessary steps in computing a profile
is given in the following procedure:

(1) If no value of skin friction is given, compute s from its defi-
nltion and the relation for the skin-friction coefficient from reference
7, Cf - 0.2_6x10"0"678(8*/@)Re_ 0"268

Thus,

where

(2) Compute

5U I

s=_-_--Cf

m from equation (13)

m = K- 1 + _K(K " I)

(5) Compute _ from equation (17)

= - (m + 1)(_)

(_) Compute n from definition in equati)n (_)

2s + _m
n = 2(1 + _)

(Useof eq. (17)(thesimplifiedeq. (6))in t_eprocedureis notmandatory
since it is possible to compute n from the exact equation once s is

determined. Evaluation of n by either equation will for most profiles

give the same answer.)

(5) All parameters of equation (5) are computed in the above steps

so the mean velocity can be calculated from equation (5).

!

(J
(J
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q

2n = 92.6
f_ eq. (5) Is : 27.5
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0 .2 .4 .6 .8 1.0

y15

(a) Zero pressure gradient measurement (ref. 8); station i;

free-stream mean velocity, 54.5 feet per second; boundary-

layer thickness, 1.15 inches.

Figure i. - Comparison of equation (5) with turbulent

boundary-layer mean velocity measurements.
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)_ m = _ O0
.6 ( _q (5) I_ = -o.63o

- " 2n = 158 -
s= 26.1

/'
U
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0 .2 .4 y/6 .6 .8 1.O

(b) Adverse pressure gradient measu:,ement (ref. 8); station 4;

8p/Sx approximately 0.2 pound pe:" square foot per foot;

free-stream mean velocity, 42.9 f._et per second; boundary-
layer thickness, 5.00 inches.

Figure 1. - Continued. Comparison ,)f equation (5) with turbu-

lent boundary-layer mean velocity measurements.
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(c) Adverse pressure gradient measurements near separation

(x, 24.5 ft; ref. ii).

Figure 1. Continued. Comparison of equation (5) with tur-

bulent boundary-layer mean velocity measurements.
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(d) Separation measurement (x, 2[.7 ft; ref. ii).

Figure i. Continued. Comparison of (quation (5) with tur-

bulent boundary-layer mean velocity neasurements.
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O

Constant pressure; Re, 7.98xi03

Solid line predicted by eq. (5)

for m = 1.79, 2n = 156,

= -0.414, s = 46.1

Great pressure rise; Re, 3.25×104

Solid line predicted by eq. (5)

for m = 1.82, 2n = 361,

= -0.655, s = 62.8

.2 .4 .6

(e) Measurements of reference 7.

.8 1.0

Figure i. - Continued. Comparison of equation (5) with tur-

bulent boundary-layer mean velocity measurements.



32

1.0

.8

%

.4

/
0

/o
0

/
0

/
/

U 1 = 56.5
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2n= -
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(f) Separation measurement of reference 16.

Figure i. - Concluded. Comparison of equation (5) with tur-

bulent boundary-layer mean velocity measurements.
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fig. 37 of ref. 2)
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(b) Adverse pressure gradient.

Figure 2. - Comparison of present analysis with outer region similarity.
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(a) Comparison with the Pohlhausen profile.

Figure 8. - Comparison of the present equation for laminar

separation with various profiles.
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Figure 8. - Continued. Comparison of the present equation for

laminar separation with various profiles.
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Figure 8. - Continued. Comparison of the present equation

for laminar separation with various profiles.
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Figure 8. Concluded. Comparison of present equation for

laminar separation with various profiles.
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